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The new approach to setting boundary conditions on the underlying surface in coupled
atmosphere-land models is adduced, it has no artificial closings and correctly describes
feedback - mutual influence of a surface and atmosphere. The algorithm of realization of
this approach in application to a surface non-covered or covered by snow is described. For
the first time in a large-scale model of a ground the influx of latent freezing-melting heat is
taken into account. The results of numerical experiments are represented.

The description of a heat both moisture exchange between an atmosphere and
underlying land surface is an extremely difficult task because of a variety of kinds
of underlying surface and complexity of processes occurring on it. It is necessary
to use plenty of thermal parameters describing the given surface. It is difficult to
describe some processes on a surface, for example, processes in a vegetative
cover, with the help of differential equations. It is also the difficulty, that the task
is nonclosed. It is possible to determine fluxes of heat and moisture on a surface
only with the help of artificial closing equations, if we don't solve the heat and
moisture diffusion equations in the ground. In hydrodynamical atmospheric mod-
els various parametrisation formula and algorithms are used for account of values
describing the heat and wet exchange between an atmosphere and a surface:
methods of account of a surface temperature, wetness of ground, the heat flux in a
ground, inner and exterior water drain, infiltration of a moisture, height of a snow
cover [1]. In soil physics and agricultural meteorology the tasks of the description
of processes in ground with the help of the equations of thermodynamics of irre-
versible processes are developed in details. The joint transport of heat and mois-
ture, latent heat fluxes, change of salts concentrations are described. The plenty of
various thermal soil characteristics is used when solving this task [3,4]. The
transport of heat in a snow cover, melting and accumulation of snow are also con-
sidered. The atmosphere thus is considered as the external influencing factor, the
feedbacks are not taken into account. Recently in some hydrodynamical models a
task of the description of heat and moisture exchange of an atmosphere with an
underlying surface both transport of heat and moisture in a ground are solved in
common. In this case setting of a problem is most correct from the point of view
of physics, but there is a difficulty connected with nonlinear boundary conditions
at a level of a surface [6,8].



The seasonal temperature oscillations are being distributed in ground to depth
of several meters. While modeling the heat and moisture transport in a ground it
is good to put the bottom boundary condition on the depth, where temperature
oscillations decay, and temperature is constant, but thus to take into account an
arrangement of the top boundary of underground waters, if it is known [4].

The heat and moisture diffusion equations [3,4,6] can be used to construct the
large-scale model of heat and moisture transport in a ground coupled with the
atmospheric model.

At large-scale modeling there is no opportunity to describe in details the proc-
ess of snow melting, therefore a balance method is used [4].

It is possible to use the equation of the heat balance for a thin surface layer of
a ground, in which solar radiation is absorbed [2], and the equation of balance of
a moisture on the surface as boundary conditions between an atmosphere and
ground.

In models of an atmosphere turbulent heat and moisture fluxes inside a layer
of constant fluxes are calculated, as a rule, with the help of special algorithms
using: temperature and humidity on a surface; temperature, humidity and velocity
at the bottom calculating level, which is set usually on the top boundary of a layer
of constant fluxes.

It is very difficult to describe with the help of differential equations the influ-
ence of vegetation on heat and wet exchange of an atmosphere with ground. The
influence of vegetation, as well as influence of horizontal inhomogenities of an
underlying surface of small scale, were out of frameworks of our research.

The algorithm described below was externalized within the framework of hy-
drodynamical model of an atmosphere developed in RSHMU. We don’t adduce
here the equations of model and algorithms of account of radiation and turbulent
fluxes because of their hugeness. The domain of the model covers Northern
Hemisphere.

The temperature and humidity fields are three-dimensioned. However the ver-
tical gradients in a boundary layer of air, as well as in an underlying ground, are
much larger that horizontal ones. Therefore in this case it is possible to consider
that processes of heat and wet exchange are one-dimensional and to carry out the
accounts separately for each point of a horizontal grid. Let us set the vertical co-
ordinate for solving of our problem by the following way: the level 0=z  is  lo-
cated on an underlying surface; the levels located under the surface will be nega-
tive. If it is snow on a surface, we move a level 0=z  on a surface of the snow
and consider snow and ground to be one continuity, thermal properties of which
depend on coordinate. In this case temperature of a surface have the same physi-
cal meaning.

The ground can have various qualitative characteristics: it can be frozen or un-
frozen, it can be covered or not covered with snow. On its surface there can also
pass or not pass various processes: the infiltration of precipitation dropped, ac-
cumulation and dissolution of snow, freezing and melting of the ground. There-
fore here it is convenient at first to formulate basic equations, and then to add



specializing blocks accounting for various qualitative characteristics and proc-
esses.

For unfrozen ground, on which surface doesn't pass any processes, equations
of heat and wet transport with assumptions mentioned can be submitted as:
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where ( )tzT , , ( )tzW ,  - a temperature and mass wetness of the ground, ρ , c ,
λ - density, specific thermal capacity, heat conductivity of the ground respec-
tively, D  - the wet diffusion coefficient in the ground. The bottom boundary
conditions we put on the level fz , down to which seasonal temperature oscilla-
tions are being distributed:
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where fT  - given (fixed) temperature on the level fz . The boundary condition
for wetness we have put, meaning that, we don’t know the depth of underground
waters. If the level of underground waters is known and fz  is above the capillary
zone of underground waters, the boundary condition also looks like (2).
Differently it is necessary to put a condition of saturation on the top boundary of
a capillary zone. We use the equations of balance of heat and moisture on a
surface as top boundary conditions:
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where ( )
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TR  - the radiation balance of underlying surface, ( )
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WTE  - the turbulent wet flux in the
atmosphere (evaporation), L  - the latent heat of condensation, γ  - the density of
the ground skeleton. Functions ( )
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the atmospheric model with the ground model, their values can be received from
the values of

0=z
T  and using corresponding algorithms and meanings of some

variables from atmospheric model. It is important to note, that these functions are
non- linear. As the top boundary condition is non-linear, we solve the problem by
numerical methods using of iterative process.

When the ground temperature falls below 0 C, water in pores freezes, and at
further increasing of temperature the ice is melting. At the front of freezing-
melting the additional source of latent heat takes place. The front itself (which has



depth ξ=z ) is mobile (there may be several such fronts). At the front we put
boundary conditions [5]:
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where KT 273* = ,
td

dξ
 - the velocity of moving front, 1λ  and 2λ  - heat

conductivity of unfrozen and frozen ground, L~  - latent heat of ice melting, 0W  -
the amount of unfrozen moisture, may be taken from the experimental data [4].
This problem in mathematics is known as Stephan problem. As far as the
equations are being solved numerically, it is convenient to use Dirac δ -function
[5]; it is can be “spread” along the temperature interval *TT −=∆  and
approximated by pseudo-delta-function ( )∆− ,*TTδ . We approximate δ -
function by this way:
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Then the first equation of system (1) can be written:
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1c  and 2c  - the specific thermal capacity of unfrozen and frozen ground.
If the surface of the ground is covered with snow it is possible to use the same

equations (1) for modeling processes of heat and moisture transport in snow both
ground if we enter the coordinate system, as it was described above.  The domain
and some boundary conditions change and various thermal characteristics of
ground and snow are to be taken into account. Height of snow l  depends on time,
therefore the coordinate system will be "mobile" and the domain for the equation
of heat transport will be depend on time. At the numerical approach this problem
can be overcome.



If the liquid precipitation drops on unfrozen ground, we find depth, on which
the water infiltrates, using the equation [4]:
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where ( )ztW ,  - the wet of the ground before precipitation, W  - the least wet
capacity of the ground, NPQ −=  - the quantity of infiltrating water, P  - pre-
cipitation, N  - exterior water drain (depends on the precipitation intensity and
existence of slopes). The equation (12) is solved numerically. If the infiltration
goes down to depth, greater than our domain, we consider, that the "spare"
moisture forms an internal drain. Further we change a profile of humidity from
above down to the depth found h : WW = .

The process of accumulation of snow is described by the formula:
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where SOLQ - solid precipitation, snρ - the snow density.
The process of snow melting takes place, when the temperature in snow in-

creases up to *T . The change of thickness of a snow cover because of melting
and amount of thawed water can be defined using the equation of thermal balance
of a snow layer at melting:
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For carrying out the numerical decision of the equations of heat and moisture
diffusion we shall enter a non-regular depths grid (5 layers). If it is snow on a
ground, we enter new levels inside snow, then it is necessary to re-count the
meaning of coordinate gridpoints: z′ - coordinate of gridpoints of a new grid. It is
known that at the numerical decision of the equations of heat and moisture diffu-
sion it is necessary to use the implicit numerical scheme [5]. Therefore at the nu-
merical decision of the equations (1) the implicit scheme of the directed forward
differences on time and central differences for second derivative on space is used.
Then the system of equations in finite differences will be:
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i – the number of depth layer, s – the number of time step.



Here iα  and iβ  depends on number of the layer i; if s
i lz <′ , they are charac-

teristics of ground, if s
i lz ≥′ , the characteristics of snow are taken into account.

For the moisture diffusion equation the coordinates of gridpoins are constant,
ii zz =′ , and iα  and iβ – the ground characteristics. The system of equations (15)

is a thee-diagonal matrix, and it can be solved by the sweep method.
For the equations of heat and moisture diffusion it is necessary to put various

boundary conditions for various kinds of a surface. As an example we should
describe setting of boundary conditions and algorithm of the decision of the equa-
tion of heat and moisture diffusion on unfrozen surface which is not covered with
snow. On the bottom boundary the conditions in discrete form with application of
finite differences will be:
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on the top boundary:
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The system of equations (15)-(20) is closed, but the conditions (18)-(20) are non-
linear, 11 +sD  and 12 +sD  depend on 1

1
+sT  and 1

1
+sW , besides, 11 +sD  and 12 +sD

depend on temperature and wetness on the first atmosphere level. That is why we
are necessitated to realize rather complicated iteration process: we set the initial
approximation meanings ss TT 1
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of iterations on temperature and wetness); we account 1,1 11 =+ νsD  and 1,1 12 =+ νsD
according to them; then we solve the system (15)-(18), and we find vectors
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It is important to note, that at use of this algorithm the radiation block and
block of account of fluxes in a boundary layer in atmospheric model should be
solved implicitly.

Numerical experiments, which were carried out, have shown the following:
- The iterative process which is necessary in the given statement of the prob-

lem for the correct description of heat and wet exchange of an atmosphere
with an underlying surface at using hydrodynamic model, coupled with
model of a ground, converges.

- The iterative process converges much more slowly above a ground covered
with snow, because of small heat conductivity of snow.



- The initial meanings of disparity are great enough: for temperature they make
4-6oC for the ground which is not covered with snow, and 7-9oC for a ground
covered with snow, and for wetness 2-4 %.

- For convergence there are necessary 12-14 iterations on temperature above a
ground covered with snow, and 6-8 iterations on temperature above a ground
not covered with snow.

- It is rational to include the iterations on wetness after some convergence on
temperature is achieved. In this case 3-4 iterations on humidity are required
only.

- The iterations converge more slowly at the day-time at those points, where
the condensation takes place, and at the night-time at those points, where the
evaporation takes place. It corresponds to physics of process and is explained
that in the given situations radiating fluxes and the fluxes of latent heat have
one sign.

- The changes of temperature in ground because of latent heat are essential and
make the tenth parts of degree. In a situation, when the front of freezing-
melting is close to the surface, it renders significant influence on meanings of
temperature on a surface.

The large meanings of the disparity in the beginning of iterations and different
speed of convergence of iterative process in various meteorological situations,
from our point of view, tells us about following. The interactivity, essential mu-
tual influences both atmospheres on a ground and ground on an atmosphere, takes
place. Therefore using of various artificial closing receptions for account of
fluxes and tendency of temperature on the surface of ground results to significant
loss of accuracy. In this case we actually describe or only influence of atmosphere
on a ground, or only influence of ground on an atmosphere. Linearization of the
top boundary condition leads to the same results. The correct statement of a prob-
lem with use of iterations allows us to describe processes of an exchange with the
greater accuracy.

The influxes of heat because of latent heat of freezing-melting in a ground are
not taken into account in models of a ground coupled with an atmosphere models
at modeling on the large territories. However they appreciably influence on
changes of temperature in ground. This process is especially important, when the
freezing-melting front is near to a surface. Therefore the account of these influxes
in model of a ground is rational.
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